Polarized localization and borate-dependent degradation of the borate transporter BOR1 in tobacco BY-2 cells

نویسندگان

  • Tomomichi Fujita
  • Liwen Jiang
  • Noboru Yamauchi
  • Tadashi Gosho
  • Kiminori Toyooka
  • Ken Matsuoka
چکیده

In the borate transporter BOR1, which is located in the plasma Arabidopsis membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in root cells, Arabidopsis did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species. 1 2 3,4 5,6

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells

In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not ...

متن کامل

High boron-induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in Arabidopsis thaliana.

Boron homeostasis is important for plants, as boron is essential but is toxic in excess. Under high boron conditions, the Arabidopsis thaliana borate transporter BOR1 is trafficked from the plasma membrane (PM) to the vacuole via the endocytic pathway for degradation to avoid excess boron transport. Here, we show that boron-induced ubiquitination is required for vacuolar sorting of BOR1. We fou...

متن کامل

Insights into the Mechanisms Underlying Boron Homeostasis in Plants

Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under bo...

متن کامل

Polar localization and endocytic degradation of a boron transporter, BOR1, is dependent on specific tyrosine residues.

Boron (B) is essential for plants, but is toxic in excess. Plants have to strictly regulate the uptake and translocation of B. In Arabidopsis thaliana root cells, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, localize to the outer (facing soil) and inner plasma membrane domains, respectively, under B limitation. The opposite polar localizations of the importer and export...

متن کامل

Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways.

Boron (B) is essential for plant growth but is toxic when present in excess. In the roots of Arabidopsis thaliana under B limitation, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, are required for efficient B uptake and subsequent translocation into the xylem, respectively. However, under high-B conditions, BOR1 activity is repressed through endocytic degradation, presum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016